TRiiSO™
A Tri-iso TryLine Company

 Delivering Better Chemistry.
Epoxy Materials

WHY?
Epoxy Materials

• Wide range of performance possibilities
 • Dozens of epoxy resin types commercially available from global manufacturers
 • Hundreds of curative and accelerator options
 • Compatible with a wide range of modifying resins, reactive and non-reactive diluents, additives, rheology modifiers, and fillers
 • FR capable
 • Thousands of formulation options

• Wide range of applications
 • Low viscosity liquid systems to solid systems (i.e. powder coatings)
 • “B” stage capable (pre-preg & film)
Epoxy Materials

• High performance capable
 • Addition reaction – low shrinkage
 • Excellent adhesion – OH groups and low shrinkage/stress
 • Suitable for highly aggressive environments
 • Moisture and chemical resistant
 • High temperature capable

• Cost effective
 • A dozen global manufacturers with significant production capacity

• Decades of research and application data in many applications

• Well established processing methods, and new methods in development
Epoxy Resin Applications

Industrial Maintenance Coatings

Delivering Better Chemistry.
Epoxy Resin Applications

Shipping Container and Marine Coatings
Epoxy Resin Applications

Industrial Floor & Terrazzo Coatings
Epoxy Resin Applications

Faux Finishes

Garage Floor Coatings
Epoxy Resin Applications

Aerospace coatings supplied by Pexa

- Cabin interior coatings
- Antislip walkway coatings
- Flexible wing coatings
- Long term interior corrosion resistant coatings
- Durable exterior topcoats and primers
- Rain erosion resistant coatings
- Composite coatings
- Insulative coatings
- High temperature resistant engine coatings
- Fluid and heat resistant wheel coatings
- Conductive antistatic coatings
- Contrast paints
- Abrasion resistant coatings for moving parts

Skydrol resistant landing gear coatings

Integral fuel tank coatings

Delivering Better Chemistry.
Epoxy Resin Applications
Epoxy Resin Applications
Epoxy Resin Applications

- Electronic Coatings
- LED encapsulants

Potting Compounds
Epoxy Resin Applications

Polymer Insulator
From 10kV
To 765kV

High Voltage
Composite
Epoxy Insulators
Epoxy Resin Applications

Composites
Epoxy Resin Chemistry

Diglycidyl Ether of Bisphenol A or Bisphenol A Diglycidyl Ether (BADGE)
Bisphenol A Epoxy Resins (BADGE or DGEBA)

- Largest volume – Over 90% of all epoxy sold is Bis A epoxy
- Commoditized material and very competitive landscape
- Wide range of applications
- Wide range of performance possibilities
 - Hundreds of curative and accelerator options
 - Thousands of formulations options
- Maximum Tg < 350 F – highest with DETDA, DDS, NMA
- Kukdo – Epokukdo YD-128 (standard grade)
Bisphenol A Epoxy Resin Synthesis

Bisphenol A + Epichlorhydrin → Diglycidyl ether of bisphenol A (DGEBA)

\[
\text{OH} + \text{CH}_2\text{CCH}_3 \rightarrow \text{OH} + \text{CH}_2\text{CCH}_3
\]

\[
\text{OH} - \text{H}_2\text{O}
\]

\[
\text{OH} + \text{OH} + \text{HO}\text{C-CCH}_2\text{Cl} \xrightarrow{\text{NaOH}} \text{bisphenol A} + \text{epichlorhydrin}
\]

\[
\text{CH}_3\text{CCH}_3
\]

\[
\text{OH}
\]
Epoxy Resin Chemistry

Bisphenol A Epoxy Advancement – Fusion Process

Diglycidyl ether of bisphenol A (DGEBA) + Bisphenol A

High molecular weight epoxy resin
Epoxy Resin Chemistry

Bisphenol A Epoxy Resins

<table>
<thead>
<tr>
<th>Resin Type</th>
<th>n</th>
<th>Molecular Weight</th>
<th>Epoxy Equivalent Weight<sup>1</sup></th>
<th>Hydroxyl Equivalent Weight<sup>2</sup></th>
<th>Hydroxyl Functionality<sup>3</sup></th>
<th>Melting Point (C)</th>
<th>Viscosity cps (25 C)</th>
<th>Usage</th>
<th>Commercial Resin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard liquid</td>
<td><1</td>
<td>180</td>
<td>185-192</td>
<td>85</td>
<td>2</td>
<td>8.12</td>
<td>11.14</td>
<td>High solids, ambient-cured two-pack systems</td>
<td></td>
</tr>
<tr>
<td>Type 2 resin</td>
<td>2</td>
<td>900</td>
<td>450-525</td>
<td>130</td>
<td>6</td>
<td>64-76</td>
<td>0.8-1.7<sup>4</sup></td>
<td>Conventional solids, ambient-cured two-pack systems</td>
<td></td>
</tr>
<tr>
<td>Type 4 resin</td>
<td>3.7</td>
<td>1,400</td>
<td>905-985</td>
<td>175</td>
<td>7+</td>
<td>95-105</td>
<td>4.3-6.3<sup>4</sup></td>
<td>Epoxy ester resin intermediates; powder coatings</td>
<td></td>
</tr>
<tr>
<td>Type 7 resin</td>
<td>8.8</td>
<td>2,900</td>
<td>1,600-1,900</td>
<td>190</td>
<td>13</td>
<td>125-132</td>
<td>17.5-27<sup>4</sup></td>
<td>Epoxy/phenolic and epoxy/ amino baking systems</td>
<td></td>
</tr>
<tr>
<td>Type 9 resin</td>
<td>12</td>
<td>3,800+</td>
<td>2,400-4,000</td>
<td>200</td>
<td>17+</td>
<td>140-155</td>
<td>36.2-98.5<sup>4</sup></td>
<td>Epoxy/phenolic and epoxy/ amino baking systems</td>
<td></td>
</tr>
</tbody>
</table>

¹ Grams of resin containing 1 equivalent of epoxy

² Grams of resin to esterify 1 mole of monobasic acid

³ Figure includes hydroxyl functionality from hydroxyl groups formed from oxirane ring opening.

⁴ Forty percent solution in diethylene glycol monobutyl ether

Delivering Better Chemistry.
Feedstocks for Epoxy

Naphtha
- NaCl
 - NaOH
- Propylene
- Cumene
- Acetone
- Phenol
 - Phenol Novolac
 - Cresol Novolac
 - Bisphenol-F
- Epichlorohydrine
 - Bromine
 - TBBA
 - BPA Epoxy
 - Br Epoxy
 - PN Epoxy
 - CN Epoxy
 - BPF Epoxy
Bisphenol F Epoxy Resins

- Similar molecular structure to Bisphenol A epoxy
- Lower viscosity & higher overall performance
- Not as susceptible to crystallization like Bisphenol A epoxy
- Higher cost but still a cost effective resin for many applications
- Can be blended with Bis A and other resins to reduce viscosity & improve crystallization resistance
Bisphenol F Epoxy Resins

- Maximum Tg is about 320 F with DDS, NMA,
- Excellent fit for many applications – very little effort put forth to sell its value
- Kukdo is basic in Bis F production, and are very competitive on these resins (as well as phenol novolac resins, which are also synthesized from Bis F)
- Kukdo – Epokukdo YDF-170 (standard grade)
Epoxy Resin Chemistry

Bisphenol F Epoxy

Bisphenol A Epoxy
Bisphenol F Epoxy Synthesis

\[\text{OH} + \text{CH}_2\text{O} \rightarrow \text{CH}_2\text{OH} \quad \text{&} \quad \text{CH}_2\text{OH} \]

\[- \text{H}_2\text{O} \quad \downarrow \quad + \]

\[\quad \text{OH} \quad \text{OH} \]

\[\text{OH} \quad \text{CH}_2 \quad \text{OH} \]

\[\text{OH} \quad \text{CH}_2 \quad \text{OH} \]

\[\text{OH} \quad \text{CH}_2 \quad \text{OH} \]

PHENOL NOVOLAC

"BIS F" ISOMERS
Epoxy Resin Chemistry

Bisphenol F Epoxy

\[
\begin{align*}
\text{CH}_2\text{-CH-CH}_2\text{-O-} & & \text{C}_6\text{H}_4\text{-CH}_2\text{-O-CH}_2\text{-CH-CH}_2\text{-O-} \\
\text{O} & & \text{O}
\end{align*}
\]

\[\text{p}_4\text{p}'\text{-DGEBF}\]
\[\alpha_2\text{p}'\text{-DGEBF}\]
\[\alpha_2\alpha'\text{-DGEBF}\]
Epoxy Resin Chemistry

Phenol Novolac Epoxy Resins

- Liquid and semi-solid resins (higher functionality = higher molecular weight/viscosity and solid at >3 functional)
- Can be used as sole binder or as modifying resins to increase performance of Bis A epoxy systems
- High mechanical strength
- > 3 functionality may need toughening additives to improve fracture toughness
- Excellent high temperature performance
- Maximum Tg about 450 F – highest with DETDA, DDS, NMA
When \(n \geq 0 \), Bis F epoxy resins are termed phenol novolac resins.
Epoxy Resin Chemistry

(2) Bisphenol A diglycidyl ether

(3) Bisphenol F diglycidyl ether

(4) Epoxy novolac
Modified Bisphenol A Epoxy Resins

- Hydrogenated Bisphenol A Epoxy

- Brominated Bisphenol A Epoxy

- Rubber toughened Bisphenol A Epoxy

- Dimer Acid Modified Bisphenol A Epoxy

- DCPD Modified Bisphenol A Epoxy

Tetrabromobisphenol A (TBBA)
High Performance Multifunctional

- Glycidyl amine epoxy resins
 - Huntsman dominates global supply, but Kukdo also provides reliable supply
- Highly cross-linked systems – typically cross-linked with aromatic diamine curatives
- Primary system used for structural components in military and commercial aircraft – DDS curative
- High cost comes with high performance
- Maximum Tg > 500 F with DDS
Epoxy Resin Chemistry

High Performance Multifunctional

TGDDM

TGmAP

TGpAP
Cycloaliphatic Epoxy Resins - Daicel

• Only 4 global manufacturers
 • TRiiSO represents Daicel, the largest and most reliable source of cycloaliphatic epoxy resins.

• Manufactured without epichlorohydrin – excellent for electronic applications – potting compounds, LED, high voltage insulators, etc.

• Resins available at very low viscosity to semi-solid grades

• Water white clarity and UV stable!

• Extremely high temperature performance > 500 F with NMA
Cycloaliphatic Epoxy Resins

- CELLOXIDE 2021 P
 - Standard grade
- CELLOXIDE 2081
 - Flexibility grade
- EPOLEAD GT401
 - Multifunctional grade
- CYCLOMER M100
 - Hybrid grade
- CELLOXIDE 2000
 - Diluted grade
- EHPE3150
 - High Tg grade
- EPOLEAD PB
- EPOFRIEND

Applications of CELLOXIDE & EHPE
- Coatings
- Composite materials
- Adhesives
- Electronics
 - (Potting for semiconductor, LED, Insulating varnish)
- Stabilizer for plastics
- Acid and halogen scavenger

Delivering Better Chemistry.
1. **Waterborne Epoxy Type 1** = Surfactant additive stabilized standard liquid epoxy emulsion = long dry time, not shear stable (some stability issues in can possible, shorter shelf-life than conventional acrylic WB coatings). Typically used with water soluble amine curing agents (poor water resistant system)

2. **Waterborne Epoxy Type 2** = Surfactant additive stabilized solid epoxy dispersion (Ancarez AR555) = shorter dry time, not shear stable (some stability issues in production & storage possible, shorter shelf-life than conventional acrylic WB coatings). Have to use coalescing solvents, so these are higher VOC systems. They do have a bit better water resistance (not much) vs. Waterborne Epoxy Type 1, due to less water soluble amine curing agent required (higher EEW of solid epoxy).

3. **Waterborne Epoxy Type 3** = Surfactant additive stabilized liquid or solid epoxy dispersion, and a carboxyl-functional acrylic curatives. Still some stability issues, not shear stable, long dry time, but more resistant to yellowing and chalking.
4. **Waterborne Epoxy Type 4** = Hydrophobic amine curative emulsions combined with straight liquid epoxy resin (100% solids) or with surfactant additive stabilized epoxy resins. Overall still poor systems with long dry-time, and only slightly better water resistance.

5. **Waterborne Epoxy Type 5** = Internally stabilized (non-ionic surfactant built into the backbone of the epoxy) - SHEAR STABLE, much better water resistance, excellent dry-time. Also has the advantage of noticeable end of pot-life, when combined with internally stabilized hydrophobic amine emulsions (viscosity builds at end of pot-life). Both Kukdo KEM-101-50 (internally stabilized solid epoxy dispersion) and KEM-128-70 (internally stabilized liquid epoxy emulsion) are Type 5 WB epoxy resins. Combined with Kukdo KH-705 (internally stabilized hydrophobic amine curative), the performance is as good or better than conventional 2k epoxy systems.
Reactive Diluents

- Reactive diluents reduce viscosity, without significant damage to performance
 - Cure response
 - Cured resin performance
- Depending on system being modified and choice of RD, targeted properties can be improved
- Wide range of available reactive diluents to meet most application needs
Mono-Functional Reactive Diluents

<table>
<thead>
<tr>
<th>Chemical Type</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyl C12-C14 Glycidyl Ether</td>
<td></td>
</tr>
<tr>
<td>Butyl Glycidyl Ether</td>
<td></td>
</tr>
<tr>
<td>2-Ethylhexyl Glycidyl Ether</td>
<td></td>
</tr>
<tr>
<td>Cresyl Glycidyl Ether</td>
<td></td>
</tr>
<tr>
<td>p-tert-Butylphenyl Glycidyl Ether</td>
<td></td>
</tr>
</tbody>
</table>
Di & Tri-Functional Reactive Diluents

<table>
<thead>
<tr>
<th>Chemical Type</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimethyl Propane Triglycidyl Ether</td>
<td></td>
</tr>
<tr>
<td>1,4 Butanediol Diglycidyl Ether</td>
<td></td>
</tr>
<tr>
<td>Neopentyl Glycol Diglycidyl Ether</td>
<td></td>
</tr>
<tr>
<td>Cyclohexane Dimethanol Diglycidyl Ether</td>
<td></td>
</tr>
</tbody>
</table>

Image placeholders provided for structure images.

TRiiSO™ A Tri-iso Tryline Company

Delivering Better Chemistry.
Kukdo Reactive Diluents

Mono-functional

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>Product Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C–BGE</td>
</tr>
<tr>
<td>n-Butylglycidyl ether</td>
<td>LGE</td>
</tr>
<tr>
<td>Aliphatic glycidyl ether (C12–C14)</td>
<td>2-EHHE</td>
</tr>
<tr>
<td>2–Ethylhexylglycidyl ether</td>
<td>AGE</td>
</tr>
<tr>
<td>Aliphatic glycidyl ether (C8–C10)</td>
<td>2–Ethyhexylglycidyl ether</td>
</tr>
<tr>
<td>Phenyl glycidyl ether</td>
<td>PGE</td>
</tr>
<tr>
<td>Nonylphenyl glycidyl ether</td>
<td>PGE</td>
</tr>
<tr>
<td>3–alkylphenol glycidyl ether</td>
<td>PGE</td>
</tr>
<tr>
<td>3–alkylphenol glycidyl ether</td>
<td>PGE</td>
</tr>
<tr>
<td>Fluorinate d Alcohol Epoxy Resin</td>
<td>FGE</td>
</tr>
<tr>
<td>o–Phenylphenol glycidyl ether</td>
<td>OPPGE</td>
</tr>
<tr>
<td>Benzyl glycidyl ether</td>
<td>DPGE</td>
</tr>
<tr>
<td>Dodecylphenyl glycidyl ether</td>
<td>DPGE</td>
</tr>
</tbody>
</table>

Di-functional

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>Product Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4–Butanediol diglycidyl ether</td>
<td>BDDGE</td>
</tr>
<tr>
<td>1,6–Hexanediol diglycidyl ether</td>
<td>HDDGE</td>
</tr>
<tr>
<td>Neopentyl glycol diglycidyl ether</td>
<td>NPGDGE</td>
</tr>
<tr>
<td>1,4–Cyclohexane dimethanol diglycidyl ether</td>
<td>CHDMDGE</td>
</tr>
<tr>
<td>Polypropylene glycol diglycidyl ether</td>
<td>PPGDGE</td>
</tr>
<tr>
<td>Ethyleneglycol diglycidyl ether</td>
<td>EGDGE</td>
</tr>
<tr>
<td>Polyethylene glycol diglycidyl ether</td>
<td>PEGDGE (200)</td>
</tr>
<tr>
<td>Polyethylene glycol diglycidyl ether</td>
<td>PEGDGE (400)</td>
</tr>
<tr>
<td>Diethylene glycol diglycidyl ether</td>
<td>DGDGE</td>
</tr>
<tr>
<td>Roscercinol diglycidyl ether</td>
<td>RDGE</td>
</tr>
<tr>
<td>Tiodiphenyl diglycidyl ether</td>
<td>TDPGE</td>
</tr>
</tbody>
</table>

Multi-functional

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>Product Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimethylolpropane triglycidyl ether</td>
<td>TMPTGE</td>
</tr>
<tr>
<td>Glycerol polyglycidyl ether</td>
<td>GPGE</td>
</tr>
<tr>
<td>Diglycerol polyglycidyl ether</td>
<td>DGPGE</td>
</tr>
<tr>
<td>Pentaerythritol polyglycidyl ether</td>
<td>panta</td>
</tr>
<tr>
<td>Sorbitol polyglycidyl ether</td>
<td>CPGE</td>
</tr>
<tr>
<td>Sorbitol polyglycidyl ether</td>
<td>SPGE</td>
</tr>
<tr>
<td>Neodecanolic acid glycidyl ester</td>
<td>E–10</td>
</tr>
<tr>
<td>1,2–cyclohexanedicarboxylate</td>
<td>HHPA</td>
</tr>
<tr>
<td>N,N–Diglycidyl aniline</td>
<td>GAN</td>
</tr>
<tr>
<td>N,N–Diglycidyl–o–toluidine</td>
<td>GOT</td>
</tr>
<tr>
<td>Triglycidyl–p–Aminophenol</td>
<td>TGPAP</td>
</tr>
<tr>
<td>Tetraglycidyl–diamino–diphenyl methane</td>
<td>TGMDA</td>
</tr>
<tr>
<td>Cyclic/alphatic epoxy resin</td>
<td>–</td>
</tr>
</tbody>
</table>

KF EPIOL

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>Product Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 100</td>
<td>ME 101</td>
</tr>
<tr>
<td>ME 102</td>
<td>ME 103</td>
</tr>
<tr>
<td>ME 104</td>
<td>ME 105</td>
</tr>
<tr>
<td>ME 700</td>
<td>ME 701</td>
</tr>
<tr>
<td>ME 702</td>
<td>ME 703</td>
</tr>
<tr>
<td>ME 704</td>
<td>ME 705</td>
</tr>
<tr>
<td>ME 706</td>
<td>ME 707</td>
</tr>
<tr>
<td>ME 708</td>
<td>ME 709</td>
</tr>
</tbody>
</table>

Delivering Better Chemistry.

TRiiSO™
A Tri-iso Tryline Company
Epoxy Curatives

- Aliphatic Amines
 - Polyalkylene amine
 - Poly oxyalkylene amines
 - Cycloaliphatic amines
- Fatty Acid Modified Amines
 - Polyamides
 - Amido-amines
 - Mannich Bases
- Aliphatic Amine Adducts
- Aromatic Amines
- Anhydrides

Delivering Better Chemistry.
Epoxy Curatives

- Dicyandiamine
- Lewis Acids – Boron Tri-fluoride monoethylamine (BF3-MEA)
- Dihydrazides
- Acrylic & Methacrylic Resins
- Phenolic Novolacs
- Cyanate Esters
- Isocyanates
Curing Epoxy Resins

\[
\begin{align*}
\text{CH}_2\text{CH}_2\text{CH}_2\text{N} & \text{R} \text{N} \text{CH}_2\text{CH}_2\text{CH}_2\text{N} \\
\text{H} & \text{H} \\
\text{OH} & \text{OH}
\end{align*}
\]

Delivering Better Chemistry.
Curing Epoxy Resins
Curing Epoxy Resins

1. \[R-\text{NH}_2 + \text{CH}_2-\text{CH} \xrightarrow{\text{H}} R-\text{N}-\text{CH}_2-\text{CH} \]
 - Primary Amine + Epoxide → Secondary Amine + Hydroxyl

2. \[R'-\text{N}-\text{CH}_2-\text{CH} \xrightarrow{\text{CH}_2-\text{CH}} R'-\text{N}-(\text{CH}_2-\text{CH}) \]
 - Secondary Amine + Epoxide → Tertiary Amine + Hydroxyl

3. \[R''-\text{N}-(\text{CH}_2-\text{CH}) \xrightarrow{\text{CH}_2-\text{CH}} R''-\text{N}-(\text{CH}_2-\text{C-O})n \]
 - Tertiary Amine + Epoxide → Quaternary Ammonium polyether

4. \[\text{CH} \xrightarrow{\text{O}} \text{CH}-\text{CH}_2-\text{CH} \xrightarrow{\text{OH}} \text{CH} \]
 - Secondary Hydroxyl + Epoxide → Ether + Hydroxyl
Curing Epoxy Resins

Secondary alcohols from the epoxy backbone or other alcohols (aliphatic) react with the anhydride forming a monoester.

\[
\text{HOC}O \; \text{CO} + \text{HO-CH} \rightarrow \text{HOC}O \; \text{CO} + \text{HO-CH}
\]

The corresponding carboxylic acid can then react with an epoxy group forming a diester.

\[
\text{HOC}O \; \text{CO} + \text{HO-CH} \rightarrow \text{HOC}O \; \text{CO} + \text{HO-CH}
\]

A competing reaction is epoxy groups reacting with a secondary alcohol forming an (β-hydroxy) ether linkage.

\[
\text{CH}_2-\text{CH-CH}_2-\text{R} + \text{HO-CH} \rightarrow \text{CH}_2-\text{CH-CH}_2-\text{R} + \text{HO-CH}
\]
Curing Epoxy Resins

\[
\begin{align*}
\text{F-B-N-H} & \quad + \quad \text{HC-O-CH}_2 \\
\text{F-B-N-H} & \quad \rightarrow \quad \text{[F-B-N-H]^-} \\
\text{[F-B-N-H]^-} & \quad + \quad \text{HC-O-CH}_2 \\
\text{[F-B-N-H]^-} & \quad \rightarrow \quad \text{CH-CH}_2 \\
n \text{HC-O-CH}_2 & \quad \rightarrow \quad \text{[F-B-N-H]^-} \\
\end{align*}
\]
Complimentary Additives

- Fillers – ATH, Talc, Blanc Fixe, etc.
- Pigments
- FR Additives – TBBA, APP, MC, Zinc Borate, DOPO, other phosphate and bromine based materials – ICL, Shandong Tianyi
- Phase Separation Toughening Additives – Kukdo, Kaneka
- Silanes – AB Specialty Silicones
- Polyols
Composite Industry is looking for new materials & process technology (new chemistry) to improve performance, process and cure profiles outside of older established offerings.

NEW SYSTEMS
FASTER CURE
BETTER PROCESSING
LOWER HSE
HIGH TOUGHNESS
BETTER SHELF-LIFE
NON-HALOGEN FR

Figure 1 – Limited view of available thermoset resin systems for aerospace. Table published by Hexion.